Abstract
Additive functional model is one popular semiparametric approach for regression with a functional predictor. Optimal prediction error rate has been demonstrated in the framework of reproducing kernel Hilbert spaces (RKHS), which only depends on the property of the RKHS but not on the smoothness of the function. We extend this previous theoretical result by establishing faster convergence rates under stronger conditions which is reduced to existing results when the stronger condition is removed. In particular, our result shows that with a smoother function the convergence rate of the estimator is faster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.