Abstract
A non-fullerene, all-small-molecule solar cell (NF-SMSC) device uses the blend of a small molecule donor and a small molecule acceptor as the active layer. Aggregation ability is a key factor for this type of solar cell. Herein, we used the alkylthienyl unit to tune the aggregation ability of the diketopyrrolopyrrole (DPP)-based small molecule donors. Replacing two alkoxyl units in BDT-O-DPP with two alkylthienyl units yields BDT-T-DPP, and further introducing another two alkylthienyl units into the backbone produces BDT-T-2T-DPP. With the introduction of alkylthienyl, the backbone becomes twisted. As a result, the ππ-stacking strength, aggregation ability, and crystallite size all obey the sequence of BDT-O-DPP > BDT-T-DPP > BDT-T-2T-DPP. When selected a reported perylene diimide dimer of bis-PDI-T-EG as acceptor, the best NF-SMSC device exhibits a power conversion efficiency of 1.34, 2.01, and 1.62%, respectively, for the BDT-O-DPP, BDT-T-DPP, and BDT-T-2T-DPP based system. The BDT-T-DPP/bis-PDI-T-EG system yields the best efficiency of 2.01% among the three combinations. This is due to the moderate aggregation ability of BDT-T-DPP yields moderate phase size of 30-50 nm, whereas the strong aggregation ability of BDT-O-DPP gives a bigger size of 50-80 nm, and the weak aggregation ability of BDT-T-2T-DPP produces a smaller size of 10-30 nm. The BDT-T-DPP/bis-PDI-T-EG combination exhibits balanced hole/electron mobility of 0.022/0.016 cm(2)/(V s), whereas the BDT-O-DPP/bis-PDI-T-EG and the BDT-T-2T-DPP/bis-PDI-T-EG blend show a hole/electron mobility of 0.0011/0.0057 cm(2)/(V s) and 0.0016/0.11 cm(2)/(V s), respectively.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have