Abstract

An eight-week feeding trial was conducted to investigate the effects of diets supplemented with three sulfur-containing amino acids (SAA), namely, methionine, cysteine, and taurine, on the intestinal health status of juvenile turbot (Scophthalmus maximus) fed high-lipid diets. Four diets were formulated, namely, a high-lipid control diet (16% lipid, HL) and three SAA-supplemented diets, which were formulated by supplementing 1.5% methionine (HLM), 1.5% cysteine (HLC), and 1.5% taurine (HLT) into the HL control diet, respectively. Each diet was assigned to triplicate tanks, and each tank was stocked with 30 juvenile fish (appr. initial weight, 8 g). The histological and morphometric results showed that dietary SAA supplementation obviously improved the intestinal morphology and integrity, in particular as reflected by higher height of microvilli and mucosal folds. Dietary SAA supplementation, in particular cysteine, up-regulated the gene expression of mucin-2 and tight junction proteins (ZO-1, Tricellilun and JAM). Dietary SAA supplementation remarkably down-regulated the gene expression of apoptosis-related factors such as p38, JNK, and Bax, expression of pro-inflammatory factors (e.g., NF-κB, AP-1 IL-1β, IL-8, and TNF-α). SAA supplementation resulted in higher antioxidative abilities in the intestine. Additionally, dietary SAA supplementation largely altered the communities of intestinal microbiota. Compared with the HL group, higher relative abundance of potential beneficial bacteria, and lower relative abundance of opportunistic pathogens were observed in SAA-supplemented groups. Dietary taurine supplementation significantly increased the relative abundance of Ligilactobacillus (in particular Lactobacillus murinus) and Limosilactobacillus (especially Lactobacillus reuteri). In conclusion, dietary sulfur-containing amino acids supplementation have promising potential in ameliorating the intestinal inflammation of turbot fed high-lipid diets. Especially dietary cysteine and taurine supplementation have more positive effects on the communities of the intestinal microbiota of turbot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call