Abstract

Nicotine and nicotinic acid (NA) are both considered to be representatives of N-heterocyclic aromatic compounds, and their degradation pathways have been revealed in Pseudomonas species. However, the cooccurrence of these two pathways has only been observed in Pseudomonas sp. strain JY-Q. The nicotine pyrrolidine catabolism pathway of strain JY-Q consists of the functional modules Nic1, Spm, and Nic2. The module enzyme, 3-succinoylpyridine monooxygenase (Spm), catalyzes transformation of 3-succinoyl-pyridine (SP) to 6-hydroxy-3-succinoyl-pyridine (HSP). There exist two homologous but not identical Spm enzymes (namely, Spm1 and Spm2) in JY-Q. However, when spm1 and spm2 were both in-frame deleted, the mutant still grew well in basic salt medium (BSM) supplemented with nicotine as the sole carbon/nitrogen nutrition, suggesting that there exists an alternative pathway responsible for SP catabolism in JY-Q. NicAB, an enzyme accounting for NA hydroxylation, contains reorganized domains similar to those of Spm. When the JY-Q_nicAB gene (nicAB in strain JY-Q) was introduced into another Pseudomonas strain, one that is unable to degrade NA, the resultant recombinant strain exhibited the ability to transform SP to HSP, but without the ability to metabolize NA. Here, we conclude that NicAB in strain JY-Q exhibits an additional role in SP transformation. The other genes in the NA cluster, NicXDFE (Nic2 homolog), then also exhibit a role in subsequent HSP metabolism for energy yield. This finding also suggests that the cooccurrence of nicotine and NA degradation genes in strain JY-Q represents an advantage for JY-Q, making it more effective and flexible for the degradation of nicotine.IMPORTANCE 3-Succinoyl-pyridine (SP) and 6-hydroxy-3-succinoyl-pyridine (HSP) are both valuable chemical precursors to produce insecticides and hypotensive agents. SP and HSP could be renewable through the nicotine microbial degradation pathway, in which 3-succinoylpyridine monooxygenases (Spm) account for transforming SP into HSP in Pseudomonas sp. strain JY-Q. However, when two homologous Spm genes (spm1 and spm2) were knocked out, the mutant retained the ability to degrade nicotine. Thus, in addition to Spm, JY-Q should have an alternative pathway for SP conversion. In this research, we showed that JY-Q_NicAB was responsible for this alternative SP conversion. Both of the primary functions for nicotinic acid dehydrogenation and the additional function for SP metabolism were detected in a recombinant strain harboring JY-Q_NicAB. As a result, both nicotinic acid and nicotine degradation pathways in JY-Q contribute to its remarkable nicotine tolerance and nicotine degradation availability. These findings also provide one more metabolic engineering strategy for accumulation for value-added intermediates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.