Abstract
Microplastics (MPs) represent an emerging factor in global environmental change and are increasingly found in soils. However, the extent to which they affect plants and their interactions with the soil microbiome is poorly understood. Here, we test the hypothesis that increasing levels of polyester MP fibers in soil alter plant growth and nutrient acquisition responses to arbuscular mycorrhizal (AM) fungi via changes in AM fungal colonization and community composition. We used Sorghum drummondii as a model species in a fully factorial greenhouse experiment. Plants were exposed to soil treatments with 0, 0.2, 1, and 3 % MP polyester fibers either in the presence or absence of an assembled AM fungal community comprising 13 species across three families with contrasting life-history strategies. We found that the 1 % MP treatment promoted plant biomass irrespective of the presence of AM fungi. While no changes in macronutrient concentrations in plant tissues were seen, there was a significant increase in B and Mn when relatively low amounts of MPs were added, and this effect was modulated by AM fungi. Furthermore, there were shifts in AM fungal community composition in response to MP, favoring taxa such as Gigaspora sp. while negatively affecting ruderal taxa like Glomus sp. Overall, our data indicate that MP polyester fibers present in soil can in some cases be beneficial to plants and AM fungal interactions. However, the implications of these findings over the long-term and in the context of ecological repercussions of MP pollution in the environment remain to be seen.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have