Abstract

The upcoming release of new whole-genome genotyping technologies will shed new light on whether there is an associative effect of previously immeasurable rare variants on incidence of disease. For Genetic Analysis Workshop 17, our team focused on a statistical method to detect associations between gene-based multiple rare variants and disease status. We added a combination of rare SNPs to a common variant shown to have an influence on disease status. This method provides us with an enhanced ability to detect the effect of these rare variants, which, modeled alone, would normally be undetectable. Adjusting for significant clinical parameters, several genes were found to have multiple rare variants that were significantly associated with disease outcome.

Highlights

  • Recent technological advances have made querying the importance of genetic factors on the occurrence of disease severity possible

  • Newer advances in genotyping technology have allowed researchers to determine even more precisely which genetic base pair may be a marker for the mutation responsible for causing a disease by looking at single-nucleotide polymorphisms (SNPs)

  • Because the Genetic Analysis Workshop 17 (GAW17) data set is dominated by rare variants, the goal of this study is to investigate the potential for combinations of rare variants to strengthen the association between common variants and disease

Read more

Summary

Introduction

Recent technological advances have made querying the importance of genetic factors on the occurrence of disease severity possible. Newer advances in genotyping technology have allowed researchers to determine even more precisely which genetic base pair may be a marker for the mutation responsible for causing a disease by looking at single-nucleotide polymorphisms (SNPs). SNPs are DNA sequence variations that occur when a single nucleotide (A, T, C, or G) in the genome is altered. Each individual has many SNPs that together create the unique human DNA pattern [1]. These base differences usually have a minor allele frequency (MAF) of 1% or more; SNPs with MAFs less than 1% are known as rare [2]. Because of the popular common disease/common variant hypothesis, which assumes that common diseases are caused by common

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.