Abstract
The solubilization of hydrophilic and lipophilic molecules, with biological relevance, in the monoolein/water (MO/W) system has been investigated for phase behavior. Small angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR) and optical microscopy (OM) have been used to characterize the microstructure of the liquid crystalline phases. Partial phase diagrams of the MO/W system in the presence of sodium decanoate, 1-adamantanamine hydrochloride, decanoic and dodecanoic acids, acetyl salicilic acid and retinol have been determined. The stability of the various phases has been followed for at least eight months. The polarity and the molecular structure of the additive determine whether it is located at the polar interface or in the apolar region of the lipid layer. Therefore, the additive affects the interfacial curvature of the lipid layer differently, which in turn will trigger transition to disparate phases. A cubic-to-reverse hexagonal phase transition has been observed with time for most of the ternary systems, with the exception of 1-adamantanamine hydrochloride and retinol. The release of free glycerol and oleic acid due to MO hydrolysis has been clearly demonstrated by 13C NMR. This would account for the changes in phase behavior observed with time. The released oleic acid, located in the MO acyl chain region, favors the inverse interfacial curvature. The average lipid dimensions in the cubic and in the reverse hexagonal phases have been calculated from SAXS data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.