Abstract
Lithium–sulfur batteries (LSBs) are widely studied as an alternative to lithium-ion batteries, this emphasis being due to their high theoretical energy density and low cost, and to the high natural abundance of sulfur. Lithium polysulfide shuttling and lithium dendrite growth have limited their commercialization. Porous polyvinylidene fluoride (PVDF) separators have shown improved performance (relative to hydrocarbon separators) in lithium-ion batteries due to faster lithium-ion migration and higher Li+ transference number. A thin polar PVDF membrane has now been fabricated via phase inversion (an immersion-precipitation method) yielding a β (polar) phase concentration of 72%. Preparation from commercial PVDF used dimethylformamide (DMF) solvent at the optimized crystallizing temperature of 70 °C, and pores in the membrane were generated by exchange of DMF with deionized water as non-solvent. The polar PVDF film produced has the advantages of being ultrathin (15 µm), lightweight (1.15 mg cm−2), of high porosity (75%) and high wettability (84%), and it shows enhanced thermal stability relative to polypropylene (PP). The porous, polar PVDF membrane was combined with a commercially available PP membrane to give a hybrid, two-layer, separator combination for LSBs. A synergy was created in the two-layer separator, providing high sulfur utilization and curbing polysulfide shuttling. The electrochemical performance with the hybrid separator (PP–β-PVDF) was evaluated in LSB cells and showed good cyclability and rate capability: those LSB cells showed a stable capacity of 750 mA h g−1 after 100 cycles at 0.1 C, much higher than that for otherwise-identical cells using a commercial PP-only separator (480 mA h g−1).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have