Abstract
The advancement of 6G (6th Generation Mobile Networks) communication technology has posed challenges for traditional communication network architectures in meeting the demands for communication efficiency and quality. Semantic communication technology, characterized by its "understand before transmit" approach, has emerged as a pivotal technology driving the progress of 6G due to its ability to enhance communication efficiency and quality. The Wireless Image Transmission Transformer (WITT) model, which operates as a semantic communication system leveraging vision transformer technology for the transmission of semantic images, has shown efficacy in transmitting input images through processes of feature extraction and channel adaptation. This study introduces an advanced channel adaptive module that is informed by deep learning methodologies and the adaptive modulation principles of the Variational Information Bottleneck (VIB). This innovation enhances the original WITT model, resulting in the development of the Adaptive Wireless Image Transmission Transformer (ADWITT) architecture. Comprehensive experimental results have unequivocally shown that the transmission performance of the ADWITT architecture substantially surpasses that of the conventional WITT (Wavelet Image Transmission Technique) model, particularly in scenarios characterized by harsh and detrimental channel conditions. These findings underscore the robustness and adaptability of the ADWITT approach, which is poised to improve the field of image transmission by offering superior performance and resilience in environments where traditional methods falter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.