Abstract

Semantic communication is a newly emerged communication paradigm that exploits deep learning (DL) models to realize communication processes like source coding and channel coding. Recent advances have demonstrated that DL-based joint source-channel coding (DeepJSCC) can achieve exciting data compression and noise-resiliency performances for wireless image transmission tasks, especially in environments with low channel signal-to-noises (SNRs). However, existing DeepJSCC-based semantic communication frameworks still cannot achieve adaptive code rates for different channel SNRs and image contents, which reduces its flexibility and bandwidth efficiency. In this paper, we propose a predictive and adaptive deep coding (PADC) framework for realizing flexible code rate optimization with a given target transmission quality requirement. PADC is realized by a variable code length enabled DeepJSCC (DeepJSCC-V) model for realizing flexible code length adjustment, an Oracle Network (OraNet) model for predicting peak-signal-to-noise (PSNR) value for an image transmission task according to its contents, channel signal to noise ratio (SNR) and the compression ratio (CR) value, and a CR optimizer aims at finding the minimal data-level or instance-level CR with a PSNR quality constraint. By using the above three modules, PADC can transmit the image data with minimal CR, which greatly increases bandwidth efficiency. Simulation results demonstrate that the proposed DeepJSCC-V model can achieve similar PSNR performances compared with the state-of-the-art Attention-based DeepJSCC (ADJSCC) model, and the proposed OraNet model is able to predict high-quality PSNR values with an average error lower than 0.5dB. Results also demonstrate that the proposed PADC can use nearly minimal bandwidth consumption for wireless image transmission tasks with different channel SNR and image contents, at the same time guaranteeing the PSNR constraint for each image data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.