Abstract
To tackle multi collinearity or ill-conditioned design matrices in linear models, adaptive biased estimators such as the time-honored Stein estimator, the ridge and the principal component estimators have been studied intensively. To study when a biased estimator uniformly outperforms the least squares estimator, some sufficient conditions are proposed in the literature. In this paper, we propose a unified framework to formulate a class of adaptive biased estimators. This class includes all existing biased estimators and some new ones. A sufficient condition for outperforming the least squares estimator is proposed. In terms of selecting parameters in the condition, we can obtain all double-type conditions in the literature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have