Abstract

Wireless sensor nodes are generally deployed randomly in hostile, harsh and inaccessible environments. For this reason, the sensor nodes are supposed to operate over long periods of time without human intervention in order to extend the life of the network as much as possible, and also, it is not possible to restore the nodes or change their positions after their deployment, but by changing the transmitting power level and redeploying a new nodes above the deployment Previously, the network performance improves and we guarantee that the deployed nodes are not lost, and we also guarantee the operation of the network as a whole. The researcher has developed an algorithm "Adaptive transmission power level according to random deployment (ATPLRD)", where the presented algorithm includes determining the power levels relative to random deployment and identifying possible paths in the network in order to reach high interconnection between nodes to achieve the least number of published nodes at the lowest energy levels for the nodes, and also determines the most important nodes in the network whose exit or failure leads to the collapse of the network, and determining The boundary nodes of the network, as well as the weakest coverage areas, which represent gaps in the network, and from it determines the number of nodes needed to deploy within these gaps as few as possible. The results of the study showed that the imposed algorithm is effective in all of the above, and we focus in this research on adaptively determining the transmission energy levels of the nodes and reducing the number of deployed nodes that make the network work effectively and improving the quality of deployment by deploying additional nodes within the Reigon of Interest. The results showed achieving the least number of deployed nodes at the lowest transmission power level and achieving high interconnection between nodes. An overall energy consumption improvement of 31.25% was achieved.

Highlights

  • Wireless sensor nodes are generally deployed randomly in hostile, harsh and inaccessible environments

  • ‫الشكل (‪ )16‬مخطط استهلاك الطاقة للعقد خلال دورات الخوارزمية عند اعتماد التوزع المحدد السداس ي‬ ‫من خلال الجدول (‪ )11‬يتبين أن النشر العشوائي والذي تمت مقارنته مع التوزع المحدد السداس ي وصل إلى‬ ‫نهاية عملية النشر خلال عملية نشر إضافية فوق النشر الأولي‪ ،‬وهذا يعتبر جيد لأن عدد العقد المستخدمة بقي قليل‬ ‫‪ 45‬عقدة منشورة عشوائي ًا ضمن المنطقة المستهدفة‪ ،‬أي أن الخوارزمية أنشأت موازنة بين عدد العقد والسوية‬ ‫الطاقية التي تعمل عليها العقد‪ ،‬وحيث أن متوسط استهلاك الطاقة في أول عملية نشر كان ‪ %71.282‬وفي نهاية‬ ‫الخوارزمية أصبح ‪ ،%68.444‬ومنه تم الوصول لتحسين مقداره ‪ %23.07‬بالنسبة للشبكة أي تم تقليل طاقة البث‬ ‫لعقد من الشبكة بهذه النسبة‪ ،‬الشكل (‪ .)16‬وبالمجمل من خلال تقليل متوسط طاقة البث للعقد فإننا نحسن‬

  • ‫الشكل (‪:)18‬تقسيم المنطقة قبل عملية إعادة النشرحسب الظهور العقد في الدورة الثانية وفق التوزع الرباعي‬ ‫من خلال إعادة نشر عقدة جديدة بشكل عشوائي انطلاق ًا من الخطوة الثانية فإننا نحصل على مخطط‬ ‫تغيرات متوسط استهلاك الطاقة لكلا التوزعين الشكل (‪ )19‬ودورات الخوارزمية حتى التوقف لكلا التوزعين الشكل‬

Read more

Summary

Introduction

Wireless sensor nodes are generally deployed randomly in hostile, harsh and inaccessible environments.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.