Abstract

We present a novel shape-approximating anisotropic re-meshing algorithm as a geometric generalization of the adaptive moving mesh method. Conventional moving mesh methods reduce the interpolation error of a mesh that discretizes a given function over a planar domain. Our algorithm, in contrast, optimizes the mesh's approximation of a curved surface; surfaces can be represented in various formats, such as a signed distance field. The optimization is achieved by continuously flowing the mesh without altering its topology, making the implementation simpler compared to other adaptive surface meshing techniques. The resulting optimal mesh can be interpreted as a harmonic map with respect to a metric using the shape operator. Furthermore, our approach can be tailored to target height fields by utilizing isotropic geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.