Abstract
Finite element method (FEM)-based time-domain quantitative photoacoustic tomography (TD-qPAT) is a powerful approach, as it provides highly accurate quantitative imaging capability by recovering absolute tissue absorption coefficients for functional imaging. However, this approach is extremely computationally demanding, and requires days for the reconstruction of one set of images, making it impractical to be used in clinical applications, where a large amount of data needs to be processed in a limited time scale. To address this challenge, here we present a graphic processing unit (GPU)-based parallelization method to accelerate the image reconstruction using FEM-based TD-qPAT. In addition, to further optimize FEM-based TD-qPAT reconstruction, an adaptive meshing technique, along with mesh density optimization, is adopted. Phantom experimental data are used in our study to evaluate the GPU-based TD-qPAT algorithm, as well as the adaptive meshing technique. The results show that our new approach can considerably reduce the computation time by at least 136-fold over the current central processing unit (CPU)-based algorithm. The quality of image reconstruction is also improved significantly when adaptive meshing and mesh density optimization are applied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.