Abstract

This paper presents an adaptive subarray coherence-based post-filter (ASCBP) applied to the eigenspace-based forward–backward minimum variance (ESB-FBMV) beamformer to simultaneously improve image quality and beamformer robustness. Additionally, the ASCBP can separate close targets. The ASCBP uses an adaptive noise power weight based on the concept of the beamformer’s array gain (AG) to suppress the noise adaptively and achieve improved images. Moreover, a square neighborhood average was applied to the ASCBP in order to provide more smoothed square neighborhood ASCBP (SN-ASCBP) values and improve the speckle quality. Through simulations of point phantoms and cyst phantoms and experimental validation, the performance of the proposed methods was compared to that of delay-and-sum (DAS), MV-based beamformers, and subarray coherence-based post-filter (SCBP). The simulated results demonstrated that the ASCBP method improved the full width at half maximum (FWHM) by 57 % and the coherent interference suppression power (CISP) by 52 dB compared to the SCBP post-filter. Considering the experimental results, the SN-ASCBP method presented the best enhancement in terms of generalized contrast to noise ratio (gCNR) and contrast ratio (CR) while the ASCBP showed the best improvement in FWHM among other methods. Furthermore, the proposed methods presented a striking performance in low SNRs. The results of evaluating the different methods under aberration and sound speed error illustrated the better robustness of the proposed methods in comparison with others.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call