Abstract

Abstract Harmonic current caused by nonlinear loads and parametric variations of output filter of inverters make popular proportional–integral–derivative (PID) voltage controller far beyond excellent performance in case of microgrid operating in islanded mode. Motivated by this limitation, this paper proposes an adaptive sliding-mode controller (ASMC) to enhance disturbance-rejection performance of control system of islanded parallel inverters. And adaptive algorithms are designed to observe external disturbances and internal perturbation so as to guarantee the globe robustness of control system of inverter. The switching gain of control input is designed to be a time-varying value which effectively reduces undesirable chattering of control input signal. Simulating and experimental results are presented that the total harmonic distortion, chattering, and steady-state error of output voltage of islanded parallel inverters are effectively reduced and the dynamic performances and the capability of perturbation rejection of control system of inverter are effectively enhanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.