Abstract
An adaptive sliding mode spacecraft attitude controller is derived in this paper. It has the advantage of not requiring knowledge of the inertia of the spacecraft, and rejecting unexpected external disturbances, with global asymptotic position and velocity tracking. The sliding manifold is designed using optimal control analysis of the quaternion kinematics. The sliding mode control law and the parameter adaptation law are designed using Lyapunov stability. Numerical simulations are performed to demonstrate both the nominal and the robust performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.