Abstract

In this paper, a new adaptive single-neuron (ASN) controller is proposed based on the just-in-time learning (JITL) technology for nonlinear process control. To mimic the traditional PID controller, a single neuron is employed in the proposed controller design strategy. Incorporated with the neural network’s learning ability, the proposed controller can control the process adaptively through the updating of its parameters by the adaptive learning algorithm developed and the information provided from the JITL. Compared with the neural network based PID controller designs previously developed, ASN controller is more amenable to on-line implementation. Simulation results are presented to illustrate the proposed method and a comparison with its conventional counterparts is made.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.