Abstract

The Pneumatic actuation systems are widely used in industrial automation, such as drilling, sawing, squeezing, gripping, and spraying. Also, they are used in motion control of materials and parts handling, packing machines, machine tools, and in robotics; e.g. two-legged robot. In this paper, a Neural Network based PI controller and Neural Network based PID controller are designed and simulated to increase the position accuracy in a pneumatic servo actuator. In these designs, a well-trained Neural Network provides these controllers with suitable gains depending on feedback representing changes in position error and changes in external load force. These gains should keep the positional response within minimum overshoot, minimum rise time and minimum steady state error. A comparison between Neural Network based PI controller and Neural Network based PID controller was made to find the best controller that can be generated with simple structure according to the number of hidden layers and the number of neurons per layer. It was concluded that the Neural Network based PID controller was trained and generated with simpler structure and minimum Mean Square Error compared with the trained and generated one used with PI controller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.