Abstract
The control of any robotic system always faces many great challenges in theory and practice. Because between theory and reality, there is always a huge difference in the uncertainty components in the system. That leads to the accuracy and stability of the system not being guaranteed with the set requirements. This paper presents a novel adaptive single-input recurrent wavelet differentiable cerebellar model articulation controller (S-RWCMAC)-based supervisory control system for an m-link robot manipulator to achieve precision trajectory tracking. This adaptive S-RWCMAC-based supervisory control system consists of a main adaptive S-RWCMAC, a supervisory controller, and an adaptive robust controller. The S-RWCMAC incorporates the advantages of the wavelet decomposition property with a CMAC fast learning ability, dynamic response, and input space dimension of RWCMAC can be simplified; and it is used to control the plant. The supervisory controller is appended to the adaptive S-RWCMAC to force the system states within a predefined constraint set and the adaptive robust controller is developed to dispel the effect of the approximate error. In this scheme, if the adaptive S-RWCMAC can not maintain the system states within the constraint set. Then, the supervisory controller will work to pull the states back to the constraint set and otherwise is idle. The online tuning laws of S-RWCMAC and the robust controller parameters are derived from the gradient-descent learning method and Lyapunov function so that the stability of the system can be guaranteed. The simulation and experimental results of the novel three-link De-icing robot manipulator are provided to verify the effectiveness of the proposed control methodology. The results indicate that the proposed model has superior accuracy compared to that of the Standalone CMAC Controller. The parameters of the average squared error in the S-RWCMAC -based 3 robot joints are lower than those of the Standalone CMAC Controller by 0.023%, 0.029%, and 0.032%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.