Abstract
The influence of the external environment can reduce the braking performance of the electric vehicle (EV) with in-wheel motors (IWM). In this paper, an adaptive sliding mode wheel slip control method with a vehicle speed observer consideration is proposed, which enables the EV to accurately track the optimal slip ratio in various environments and improve braking performance. First, the braking system dynamics model is established by taking the EV with IWM as the study object. Second, a super-twisting sliding mode observer is used to estimate the vehicle speed, and a new adaptive second-order sliding mode controller is constructed to control the braking torque. Finally, co-simulation experiments are performed under different conditions based on Carsim and MATLAB/Simulink, and the proposed scheme is validated by comparison with three control methods. The experimental results show that the proposed scheme has better control performance, and both the safety and control quality of the EV is improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.