Abstract

This study proposes an adaptive second-order sliding mode control based on a twisting algorithm to control nuclear reactor core power during load-following power maneuvers. The control system was designed based on the concept of an extended equivalent control. The control technique does not require knowledge of the uncertainty or upper bound of the disturbance in the system. Additionally, the gain of the control system is a dynamic gain that increases or decreases according to the system requirements within a specified period. Consequently, chattering was attenuated. Chattering excites high-frequency dynamics and causes wear out of the control mechanism, making chattering a severe challenge in sliding-mode control. A nuclear reactor is a time-varying, complex, nonlinear, and constrained system. The characteristics of a nuclear reactor are a function of its operating power level, fuel burnup, and aging. In addition, the load-following mode of operation causes Xenon oscillation, which can further cause instability in the core. Therefore, the non-base load operation of the system, including load following, further aggravates uncertainty and disturbances in the system. To this end, an adaptive second-order sliding mode control that does not require knowledge of the uncertainty or the upper bound of the disturbance in the system was designed. The reactor core was modelled using an experimentally verified and validated multi-point kinetic model with four nodes. Simulation experiments were conducted using a multi-point kinetics model and an adaptive second-order sliding mode control. The results of the simulation experiments indicated that reactor core integrity is guaranteed, and the core is protected against peak power densities, such as linear heat generation rates (LHGRs) and lower departure from nucleate boiling ratios (DNBR). Moreover, the control system achieved the load-following objective and suppressed Xenon oscillation. The performance of the proposed control system was further compared with that of a twisting control system and classical proportional integral derivative control system to validate the effectiveness and reliability of the adaptive twisting second-order sliding mode control system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call