Abstract
In this paper, an adaptive-scanning mode (ASM) of atomic force microscope (AFM) with near-minimum sample deformation is proposed for imaging live biological samples in liquid. Conventional contact mode (CM) imaging of live cells is rather slow (scan rate < 0.2 Hz), and as the imaging speed increases, significant deformation of the soft and highly corrugated cell membrane is induced. Such a low speed CM imaging of live biological samples is not only time consuming, but also incapable of capturing dynamic biological evolutions occurring in seconds to minutes. The proposed ASM approach aims to address these issues through two synergetic efforts integrated together. First, an adaptive-scanning technique is proposed to optimally adjust the lateral scanning speed to accommodate the sample topography variation and the probe-sample interaction force, so that the scanning-caused sample deformation is maintained below the threshold value while the overall imaging time is minimized. Secondly, a data-driven iterative feedforward control is integrated to the vertical feedback loop along with a gradient-based optimization of the deflection set-point to substantially improve the tracking of the sample topography while maintaining the vertical sample deformation around the minimal. The ASM technique is experimentally validated through imaging live human prostate cancer cells on AFM. The experimental results demonstrate that compared to the conventional CM imaging, the imaging speed is increased over eight times without loss of tracking the topography details of the live cell membrane, and the probe-sample interaction force is substantially reduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.