Abstract
A nonlinear adaptive attitude controller is designed in this paper that compensates for dynamic uncertainties in the spacecraft inertia matrix and unknown dynamic and static friction effects in the control moment gyroscope (CMG) gimbals. Attitude control torques are generated by means of a four single gimbal CMG pyramid cluster. The challenges to develop the adaptive controller are that the control input is multiplied by uncertainties due to dynamic friction effects and is embedded in a discontinuous nonlinearity due to static friction effects. A uniformly ultimately bounded result is proven via Lyapunov analysis for the case in which both static and dynamic gimbal friction is included in the dynamic model, and an extension is provided that illustrates how asymptotic tracking is achieved when only dynamic friction is present in the CMG model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.