Abstract
SummaryIn control design for vibration of beams in literature, the beam section is considered to have two axes of symmetry so that the bending and torsional vibrations are uncoupled; thus, the bending vibration is controlled independently without twisting the beam. However, if the cross section of a beam has only one axis of symmetry, the bending and torsional vibrations become coupled and the beam will undergo twisting in addition to bending. This paper addresses Lyapunov‐based boundary control of coupled bending‐torsional vibration of beams with only one axis of symmetry. The control strategy is based on applying a transverse force and a torque at the free end of the beam. The control design is directly based on the system partial differential equations (PDEs) so that spillover instabilities that are a result of model truncation are avoided. Three cases are investigated. Firstly, it is shown that when exogenous disturbances do not affect the beam, a linear boundary control law can exponentially stabilize the coupled bending‐torsional vibration. Secondly, a nonlinear robust boundary control is established that exponentially stabilizes the beam in the presence of boundary and spatially distributed disturbances. Thirdly, to rule out the need for prior knowledge of disturbances upper‐bound, the proposed robust control is redesigned to achieve an adaptive robust control that stabilizes the beam in the presence of disturbances with unknown upper‐bound. The efficacy of the proposed controls is illustrated by simulation results. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Adaptive Control and Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.