Abstract

In this paper, a robust adaptive boundary controller is proposed to stabilize the coupled rigid-flexible motion of an Euler-Bernoulli beam in presence of boundary and distributed perturbations. Applying Hamilton’s principle, the dynamics of the hybrid beam model, including the actuators hub and the payload at its ends, is represented through four nonhomogeneous nonlinear partial differential equations (PDEs) subject to ordinary differential equations (ODEs) of boundary conditions. Using a Lyapunov-based control synthesis procedure, a robust nonlinear boundary controller is established that asymptotically stabilizes the perturbed beam vibration while regulating the rigid motion coordinates. A redesign of the proposed control laws produces a robust adaptive boundary controller that achieves control objectives in the presence of both parametric and modelling uncertainties. Control design is directly based on system PDEs without truncating the model so that instabilities from spillover effects are mitigated. The control inputs to the beam consist of three forces/torque applied to the actuators hub and a transverse force applied to the tip payload. Simulation results are used to investigate the efficiency of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.