Abstract
Traditional methods of training a Brain-Computer Interface (BCI) on motor imagery (MI) data generally involve multiple intensive sessions. The initial sessions produce simple prompts to users, while later sessions additionally provide realtime feedback to users, allowing for human adaptation to take place. However, this protocol only permits the BCI to update between sessions, with little real-time evaluation of how the classifier has improved. To solve this problem, we propose an adaptive BCI training framework which will update the classifier in real time to provide more accurate feedback to the user on 4-class motor imagery data. This framework will require only one session to fully train a BCI to a given subject. Three variations of an adaptive Riemannian BCI were implemented and compared on data from both our own recorded datasets and the commonly used BCI Competition IV Dataset 2a. Results indicate that the fastest and least computationally expensive adaptive BCI was able to correctly classify motor imagery data at a rate 5.8% higher than when using a standard protocol with limited data. In addition it was confirmed that the adaptive BCI automatically improved its performance as more data became available.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have