Abstract

We present an adaptive reduced-rank signal processing technique for performing dimensionality reduction in general adaptive filtering problems. The proposed method is based on the concept of joint and iterative interpolation, decimation and filtering. We describe an iterative least squares (LS) procedure to jointly optimize the interpolation, decimation and filtering tasks for reduced-rank adaptive filtering. In order to design the decimation unit, we present the optimal decimation scheme and also propose low-complexity decimation structures. We then develop low-complexity least-mean squares (LMS) and recursive least squares (RLS) algorithms for the proposed scheme along with automatic rank and branch adaptation techniques. An analysis of the convergence properties and issues of the proposed algorithms is carried out and the key features of the optimization problem such as the existence of multiple solutions are discussed. We consider the application of the proposed algorithms to interference suppression in code-division multiple-access (CDMA) systems. Simulations results show that the proposed algorithms outperform the best known reduced-rank schemes with lower complexity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call