Abstract

In this paper, we employ the single channel full duplex radio for wireless local area network (WLAN) systems, and design digital interference cancellers using adaptive signal processing. When the full duplex scheme is used for WLAN systems with multiple transmit and receive antennas, some interference is caused through the feedback of transmit signals from multiple antennas. To remove the feedback interference, we derive the least mean square (LMS), normalized LMS (NLMS), and recursive least squares (RLS) algorithms based on adaptive signal processing techniques. In addition, we analyze the theoretical convergence of the proposed LMS and RLS methods. The channel capacity of full duplex radios increases by two times than that of half duplex radios, when the packet error rate (PER) performances for the two systems are identical. Through numerical simulations in WLAN systems, it is shown that the full duplex method with the proposed interference cancellers has a similar PER performance with the conventional half duplex transmission scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call