Abstract

A heterogeneous vehicular network (HetVNET) is a promising network architecture that combines multiple network technologies such as IEEE 802.11p, dedicated short-range communication (DSRC), and third/fourth generation cellular networks (3G/4G). In this network area, vehicle users can use wireless fidelity access points (Wi-Fi APs) to offload 4G long-term evolution (4G-LTE) networks. However, when using Wi-Fi APs, the vehicles must organize themselves and select an appropriate mobile gateway (MGW) to communicate to the cellular infrastructure. Researchers are facing the problem of selecting the best MGW vehicle to aggregate vehicle traffic and reduce LTE load in HetVNETs when the Wi-Fi APs are unavailable for offloading. The selection process utilizes extra network overhead and complexity due to the frequent formation of clusters in this highly dynamic environment. In this study, we proposed a non-cluster adaptive QoS-aware gateway selection (AQAGS) scheme that autonomously picks a limited number of vehicles to act as LTE gateways based on the LTE network’s load status and vehicular ad hoc network (VANET) application’s QoS requirements. The present AQAGS scheme focuses on highway scenarios. The proposed scheme was evaluated using simulation of Urban mobility (SUMO) and network simulator version 2 (NS2) simulators and benchmarked with the clustered and non-clustered schemes. A comparison was made based on the end-to-end delay, throughput, control packet overhead (CPO), and packet delivery ratio (PDR) performance metrics over Voice over Internet Protocol (VoIP) and File Transfer Protocol (FTP) applications. Using VoIP, the AQAGS scheme achieved a 26.7% higher PDR compared with the other schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call