Abstract

In this paper, we propose and analyze adaptive projected gradient thresholding (APGT) methods for finding sparse solutions of the underdetermined linear systems with equality and box constraints. The general convergence will be demonstrated, and in addition, the bound of the number of iterations is established in some special cases. Under suitable assumptions, it is proved that any accumulation point of the sequence generated by the APGT methods is a local minimizer of the underdetermined linear system. Moreover, the APGT methods, under certain conditions, can find all s-sparse solutions for accurate measurement cases and guarantee the stability and robustness for flawed measurement cases. Numerical examples are presented to show the accordance with theoretical results in compressed sensing and verify high out-of-sample performance in index tracking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.