Abstract

Numerical experiments have indicated that the reweighted $\ell_1$-minimization performs exceptionally well in locating sparse solutions of underdetermined linear systems of equations. We show that reweighted $\ell_1$-methods are intrinsically associated with the minimization of the so-called merit functions for sparsity, which are essentially concave approximations to the cardinality function. Based on this observation, we further show that a family of reweighted $\ell_1$-algorithms can be systematically derived from the perspective of concave optimization through the linearization technique. In order to conduct a unified convergence analysis for this family of algorithms, we introduce the concept of the range space property (RSP) of a matrix and prove that if its adjoint has this property, the reweighted $\ell_1$-algorithm can find a sparse solution to the underdetermined linear system provided that the merit function for sparsity is properly chosen. In particular, some convergence conditions for the Can...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.