Abstract
AbstractLaguerre Functional Model has many advantages such as good approximation capability for the variances of system time‐delay, order and other structural parameters, low computational complexity, and the facility of online parameter identification, etc., so this model is suitable for complex industrial process control. A series of successful applications have been gained in linear and non‐linear predictive control fields by the control algorithm based on Laguerre Functional Model, however, former researchers have not systemically brought forward the theoretical analyses of the stability, robustness, and steady‐state performance of this algorithm, which are the keys to guarantee the feasibility of the control algorithm fundamentally. Aimed at this problem, we introduce the principles of the Incremental Mode Linear Laguerre Predictive Control (IMLLPC) algorithm, and then systemically propose the theoretical analyses and proofs of the stability and robustness of the algorithm, in addition, we also put forward the steady‐state performance analysis. At last, the control performances of this algorithm on two different physical industrial plants are presented in detail, and a number of experimental results validate the feasibility and superiority of IMLLPC algorithm. Copyright © 2005 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Adaptive Control and Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.