Abstract

PurposePower converters are an integral part of the energy conversion process in solar photovoltaic (PV) systems which is used to match the solar PV generation with the load requirements. The increased penetration of renewable invokes intermittency in the generated power affecting the reliability and continuous energy supply of such converters. DC-DC converters deployed in solar PV systems impose stringent restrictions on supplied power, continuous operation and fault prediction scenarios by continuously observing state variables to ensure continuous operation of the converter.Design/methodology/approachA converter deployed for a mission-critical application has to ensure continuous regulated output for which the converter has to ensure fault-free operation. The fault diagnostic algorithm relies on the measurement of a state variable to assess the type of fault. In the same line, a predictive controller depends on the measurement of a state variable to predict the control variable of a converter system to regulate the converter output around a fixed or a variable reference. Consequently, both the fault diagnosis and the predictive control algorithms depend on the measurement of a state variable. Once measured, the available data can be used for both algorithms interchangeably.FindingsThe objective of this work is to integrate the fault diagnostic and the predictive control algorithms while sharing the measurement requirements of both these control algorithms. The integrated algorithms thus proposed could be applied to any converter with a single inductor in its energy buffer stage.Originality/valuelaboratory prototype is created to verify the feasibility of the integrated predictive control and fault diagnosis algorithm. As the proposed method combine the fault detection algorithm along with predictive control, a load step variation and manual fault creation methods are used to verify the feasibility of the converter as with the simulation analysis. The value for the capacitors and inductors were chosen based on the charge-second and volt-second balance equations obtained from the steady-state analysis of boost converter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.