Abstract

This paper analyses a model for the parallel development and adult coding of neural feature detectors. The model was introduced in Grossberg (1976). We show how experience can retune feature detectors to respond to a prescribed convex set of spatial patterns. In particular, the detectors automatically respond to average features chosen from the set even if the average features have never been experienced. Using this procedure, any set of arbitrary spatial patterns can be recoded, or transformed, into any other spatial patterns (universal recoding), if there are sufficiently many cells in the network's cortex. The network is built from short term memory (STM) and long term memory (LTM) mechanisms, including mechanisms of adaptation, filtering, contrast enhancement, tuning, and nonspecific arousal. These mechanisms capture some experimental properties of plasticity in the kitten visual cortex. The model also suggests a classification of adult feature detector properties in terms of a small number of functional principles. In particular, experiments on retinal dynamics, including amarcrine cell function, are suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.