Abstract

The output feedback adaptive control problem is investigated for nonholonomic systems with strongly nonlinear uncertainties and unknown virtual control directions. A nonlinear output feedback switching controller based on the output measurement of the first subsystem is employed in order to make the state scaling effective and ensure the convergence of the system states. The novel observer/estimator is introduced for state and unknown parameter estimates. The integrator backstepping technique by the use of a constructive recursive is applied to the design of the adaptive controller and to overcome the unknown virtual control directions. The simulation result validates the effectiveness of the proposed scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.