Abstract

In this article, under directed graphs, an adaptive consensus tracking control scheme is proposed for a class of nonlinear multiagent systems with completely unknown control coefficients. Unlike the existing results, here, each agent is allowed to have multiple unknown nonidentical control directions, and continuous communication between neighboring agents is not needed. For each agent, we design a group of novel Nussbaum functions and construct a monotonously increasing sequence in which the effects of our Nussbaum functions reinforce rather than counteract each other. With these efforts, the obstacle caused by the unknown control directions is successfully circumvented. Moreover, an event-triggering mechanism is introduced to determine the time instants for communication, which considerably reduces the communication burden. It is shown that all closed-loop signals are globally uniformly bounded and the tracking errors can converge to an arbitrarily small residual set. Simulation results illustrate the effectiveness of the proposed scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call