Abstract

The authors treat the multiuser scheduling problem for practical power-controlled code division multiple access (CDMA) systems under the opportunistic fair scheduling (OFS) framework. OFS is an important technique in wireless networks to achieve fair and efficient resource allocation. Power control is an effective resource management technique in CDMA systems. Given a certain user subset, the optimal power control scheme can be derived. Then the multiuser scheduling problem refers to the optimal user subset selection at each scheduling interval to maximise certain metric subject to some specific physical-layer constraints. The authors propose discrete stochastic approximation algorithms to adaptively select the user subset to maximise the instantaneous total throughput or a general utility. Both uplink and downlink scenarios are considered. They also consider the time-varying channels where the algorithm can track the time-varying optimal user subset. Simulation results to show the performance of the proposed algorithms in terms of the throughput/ utility maximisation, the fairness, the fast convergence and the tracking capability in time-varying environments are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.