Abstract

It is well known that if some observations in a sample from the probability density are not available, then in general the density cannot be estimated. A possible remedy is to use an auxiliary variable that explains the missing mechanism. For this setting a data-driven estimator is proposed that mimics performance of an oracle that knows all observations from the sample. It is also proved that the estimator adapts to unknown smoothness of the density and its mean integrated squared error converges with a minimax rate. A numerical study, together with the analysis of a real data, shows that the estimator is feasible for small samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.