Abstract
Stereopsis or depth perception is a critical aspect of information processing in the brain and is computed from the positional shift or disparity between the images seen by the two eyes. Various algorithms and their hardware implementation that compute disparity in real time have been proposed; however, most of them compute disparity through complex mathematical calculations that are difficult to realize in hardware and are biologically unrealistic. The brain presumably uses simpler methods to extract depth information from the environment and hence newer methodologies that could perform stereopsis with brain like elegance need to be explored. This paper proposes an innovative aVLSI design that leverages the columnar organization of ocular dominance in the brain and uses time-staggered Winner Take All (ts-WTA) to adaptively create disparity tuned cells. Physiological findings support the presence of disparity cells in the visual cortex and show that these cells surface as a result of binocular stimulation received after birth. Therefore, creating in hardware cells that can learn different disparities with experience not only is novel but also is biologically more realistic. These disparity cells, when allowed to interact diffusively on a larger scale, can be used to adaptively create stable topological disparity maps in silicon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.