Abstract

This paper focuses on the solutions to flexibly regulate robotic by vision. A new visual servoing technique based on the Kalman filtering (KF) combined neural network (NN) is developed, which need not have any calibration parameters of robotic system. The statistic knowledge of the system noise and observation noise are first given by Gaussian white noise sequences, the nonlinear mapping between robotic vision and motor spaces are then on-line identified using standard Kalman recursive equations. In real robotic workshops, the perfect statistic knowledge of the noise is not easy to be derived, thus an adaptive neuro-filtering approach based on KF is also studied for mapping on-line estimation in this paper. The Kalman recursive equations are improved by a feedforward NN, in which the neural estimator dynamic adjusts its weights to minimize estimation error of robotic vision-motor mapping, without the knowledge of noise variances. Finally, the proposed visual servoing based on adaptive neuro-filtering has been successfully implemented in robotic pose regulation, and the experimental results demonstrate its validity and practicality for a six-degree-of-freedom (DOF) robotic system which the hand-eye without calibrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.