Abstract

This brief proposes an adaptive neural network-based finite-time impedance control method for constrained robotic manipulators with disturbance observer. Firstly, by combining barrier Lyapunov functions with the finite-time stability control theory, the control system has a faster convergence rate without violating the full state constraints. Secondly, the adaptive neural network is introduced to approximate the unmodeled dynamics and a disturbance observer is designed to compensate for the unknown time-varying disturbances. Then, the command filtered control technique with error compensation mechanism is used to deal with the “explosion of complexity” of traditional backstepping and improve the control accuracy. The simulation results show the effectiveness of the proposed control method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.