Abstract

This paper introduces a novel adaptive multivariable attitude control method for a reusable launch vehicle (RLV) to track desired attitude trajectories in the presence of unknown external disturbances and uncertainties. Unlike most existing designs that overlook mismatched disturbances, this method employs an adaptive finite-time observer (AFO) to estimate the unknown states. Based on the outputs of the AFO and the prescribed performance function, a time-varying adaptive gain that is not overestimated is designed to establish the adaptive multivariable attitude control for the RLV system. The simulations demonstrate that the proposed approach successfully guides the RLV to follow desired attitude signals despite the presence of unmatched disturbances and uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.