Abstract

The ensemble Kalman filter (EnKF) has received substantial attention in hydrologic data assimilation due to its ease of implementation. In EnKF, a large enough ensemble size is often required to ensure accuracy, which may result in considerable computational overhead, especially for large-scale problems. Motivated by recent developments in multi-fidelity simulation, we develop a novel data assimilation method that provides an alternative to EnKF, namely adaptive multi-fidelity probabilistic collocation-based Kalman filter (AMF-PCKF). The appealing feature is to approximate the system response with polynomial chaos expansion (PCE) using the adaptive multi-fidelity probabilistic collocation method, which improves the computational efficiency without sacrificing accuracy. This constitutes the forecast step of AMF-PCKF, while the analysis step is established by sequentially updating the PCE coefficients. As demonstrated by a synthetic numerical case of heat transport in unsaturated flow and a real-world two-phase flow experiment, AMF-PCKF can provide more accurate estimations than EnKF under the same amount of computation, even when the number of unknown parameters is as high as 100.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.