Abstract

An adaptive local postprocessing finite element method for the Navier-Stokes equations is presented in this paper. We firstly solve the problem on a relative coarse grid to get a rough approximation. Then, we correct the rough approximation by solving a series of approximate local residual equations defined on some local fine grids, which can be implemented in parallel. In addition, we also propose a reliable local a posteriori error estimator and construct an adaptive algorithm based on the corresponding a posterior error estimate. Finally, some numerical examples are presented to verify the algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.