Abstract

Abstract : This article discusses an adaptive local refinement finite element method for solving initial-boundary value problems for vector systems of partial differential equations in one space dimension and time. The method uses piecewise bilinear rectangular space-time finite elements. For each time step, grids are automatically added to regions where the local discretization error is estimated as being larger than a prescribed tolerance. The authors discuss several aspects of our algorithm, including the tree structure that is used to represent the finite element solution and grids, an error estimation technique, and initial and boundary conditions at coarse-fine mesh interfaces. They also present computational results for a simple linear hyperbolic problem, a problem involving Burger's equation, and a model combustion problem. (Author)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.