Abstract

Background and ObjectiveAutomated R-wave detection plays a vital role in electrocardiography (ECG) and ECG-based computer-aided diagnosis. Recently, a multi-level one-dimensional (1D) deep learning approach was presented that shows good performance as compared to traditional methods. MethodsIn this paper, we present several improvements of the multi-level 1D convolutional neural network (CNN)-based deep learning approach using: (i) adaptive deep learning, (ii) cross-database training, and (iii) cross-lead training. For this, we consider ECG signals from four publicly available databases: MIT-BIH, INCART, TELE, and SDDB, having 109,404, 175,660, 6,708, and 1,684,447 annotated beats, respectively. Except for TELE, all databases provide at least two-lead recordings. To evaluate the improvements, experiments are performed with adaptive k-times cross-trained databases validation scheme (k = 5). The hypothesis tested are: (i) the improvements outperform the state-of-the-art, (ii) cross-database training and adaptive deep learning contribute, and (iii) additional databases or cross-lead training further improves the results. ResultsOur proposed approach outperforms the state-of-the-art. In terms of F-measure, F = 99.75% and F = 95.25% is obtained for the MIT-BIH and TELE databases, respectively. Further, cross-database training (F = 98.02%) is found to be more effective than training on individual databases (F = 97.33%). The performance of our approach further improves when additional databases and different leads are used for training. ConclusionExisting state-of-the-art methods perform low on noisy and pathological signals. Adaptive cross-data training identifies the optimal model. Using multiple datasets and leads allows analyzing noisy, pathological and mobile-recorded long-term ECG signals without ground truths. These conclusions are based on the comprehensive evaluation of four different databases, and in total, about 4.5 million annotated beats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call