Abstract

We propose a novel kernel estimator of the baseline function in a general high-dimensional Cox model, for which we derive non-asymptotic rates of convergence. To construct our estimator, we first estimate the regression parameter in the Cox model via a LASSO procedure. We then plug this estimator into the classical kernel estimator of the baseline function, obtained by smoothing the so-called Breslow estimator of the cumulative baseline function. We propose and study an adaptive procedure for selecting the bandwidth, in the spirit of Goldenshluger and Lepski (2011). We state non-asymptotic oracle inequalities for the final estimator, which leads to a reduction in the rate of convergence when the dimension of the covariates grows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.