Abstract

This article presents an adaptive iterative learning fault-tolerant control algorithm for state constrained nonlinear systems with randomly varying iteration lengths subjected to actuator faults. First, the modified parameters updating laws are designed through a new defined tracking error to handle the randomly varying iteration lengths. Second, the radial basis function neural network method is used to deal with the time-iteration-dependent unknown nonlinearity, and a barrier Lyapunov function is given to cope with the state constraint. Finally, a new barrier composite energy function is used to achieve the tracking error convergence of the presented control algorithm along the iteration axis with the state constraint and then followed with the extension to the high-order case. A simulation for a single-link manipulator is given to illustrate the effectiveness of the theoretical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.