Abstract

In this article, a cooperative adaptive iterative learning fault-tolerant control (CAILFTC) algorithm with the radial basis function neural network (RBFNN) is proposed for multiple subway trains subject to the time-iteration-dependent actuator faults by using the multiple-point-mass dynamics model. First, an RBFNN is utilized to cope with the unknown nonlinearity of the subway train system. Next, a composite energy function (CEF) technique is applied to obtain the convergence property of the presented CAILFTC, which can guarantee that all train speed tracking errors are asymptotic convergence along the iteration axis; meanwhile, the headway distances of neighboring subway trains are kept in a safety range. Finally, the effectiveness of theoretical studies is verified through a subway train simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.